- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Прежде чем проводить анализ процессов, происходящих при эксплуатации систем и сосудов, находящихся под давлением, рассмотрим основные положения.
Герметичность — это непроницаемость жидкостями и газами стенок и соединений, ограничивающих внутренние объемы устройств и установок.
Герметичность используется во всех установках и устройствах, в которых в качестве рабочего тела применяется жидкость или газ. Условие герметичности является обязательным для вакуумных установок.
На производстве используются такие системы повышенного давления, как трубопроводы, баллоны и емкости для сжатых, сжиженных и растворенных газов, газгольдеры, компрессоры. Любые системы повышенного давления всегда представляют собой потенциальную опасность взрыва.
Основные причины разрушения и разгерметизации систем повышенного давления:
Обеспечение требуемой герметичности и взрывозащиты системы достигается техническими и организационно-техническими мероприятиями (рис. 14.1).
Потери герметичности аппаратуры при проведении испытаний, %, можно определить по формуле
где р1, р2 — соответственно начальное и конечное давление, Па; Т1, Т2 — температура соответственно в начале и в конце испытаний, К; t — продолжительность испытаний, ч.
Испытание на герметичность проводят после гидравлических испытаний на прочность, используя воздух, азот или инертные газы, доводя давление до рабочего.
Результаты считаются неудовлетворительными, если падение давления за 1 ч составляет 0,2 % для новых аппаратов и 0,5 % — при периодических испытаниях.
В соответствии с транспортируемым по трубопроводу веществом применяется опознавательная окраска трубопроводов (табл. 14.1).
Для обозначения степени опасности на трубопроводы наносятся цветные предупреждающие кольца, число которых определяет степень опасности:
Испытания трубопроводов на герметичность проводятся воздухом. При этом создается давление, равное рабочему давлению Рр, т.е. максимальному избыточному давлению, возникающему при нормальном протекании рабочего процесса. Рабочее давление устанавливается расчетом на прочность.
Гидравлические испытания трубопроводов проводятся водой при пробном давлении, равном 1,25 Рр, но не менее 0,2 МПа.
Пробным давлением принято считать давление, при котором испытывают систему при проверке прочности и плотности.
При прокладке газопроводов необходимо учитывать то обстоятельство, что в них образуется конденсат. Поэтому газопроводы прокладываются с небольшим уклоном в сторону движения газа и снабжаются спускным клапаном для удаления конденсата и масла.
Трубопроводы, по которым транспортируются сжиженные газы, прокладывают на расстоянии не менее 0,5 м от трубопроводов с горячим рабочим телом. Кроме того, на трубопроводы с горячим рабочим телом наносят теплоизоляцию.
При прокладывании трубопроводов, предназначенных для транспортировки легкозамерзающих газов, их располагают рядом с паропроводами и трубопроводами горячей воды.
Паропроводы снабжаются конденсатоотводчиками, для снижения напряжений от тепловых деформаций на них делается П-образный участок.
Трубопроводы, предназначенные для транспортировки легковоспламеняющихся жидкостей и газов, оборудуются автоматическими задвижками, гидрозатворами.
Для хранения и перевозки сжатых, сжиженных и растворенных газов при температурах от -50 до +60 °С используются баллоны, изготавливаемые из углеродистой стали на рабочее давление 10,15 и 20 МПа, а также из легированной стали на рабочее давление 15 и 20 МПа. Баллоны изготавливают малой емкости (от 0,4 до 12 л), средней емкости (от 20 до 50 л) и большой емкости (от 80 до 500 л).
На горловину баллона наносится маркировка, содержащая следующую информацию:
Поверхность баллона (наружная) окрашивается в определенный цвет, на нее наносится соответствующая веществу надпись и сигнальная полоса (табл. 14.2) в соответствии с ПБ-10-115-96 «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением».
Остаточное давление в баллонах, поступающих на заводы-наполнители, должно быть не менее 0,05 МПа, а баллоны для растворенного ацетилена должны иметь остаточное давление не менее 0,05 МПа и не более 0,1 МПа. Это необходимо для контроля остатка газа и предотвращения проникновения в баллон других газов.
Причины взрывов баллонов:
Действующие в настоящее время Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ-10-115-96) распространяются:
Правила не распространяются:
Все сосуды, на которые распространяется действие Правил, должны быть зарегистрированы в Госгортехнадзоре России на основании письменного заявления владельца. Разрешение на пуск в работу сосудов выдается инспектором Госгортехнадзора России после технического освидетельствования (внутреннего осмотра и гидравлических испытаний). Техническое освидетельствование сосудов, зарегистрированных в органах Госгортехнадзора России, проводит инспектор по котлонадзору. Если по конструктивным особенностям невозможно провести внутренний осмотр сосудов, то применяют гидравлическое испытание, пробное давление и осмотр в доступных местах. Внутренний осмотр сосудов проводится не реже 1 раза в четыре года, гидравлические испытания — не реже 1 раза в восемь лет.
При гидравлических испытаниях емкость сосуда, температура которого должна быть 5 °С, заполняют водой температурой 40 °С, после чего давление воды плавно повышают до значений пробного давления Рпр.
Для литых сосудов
где К — коэффициент приведения допустимых напряжений материала к стандартной температуре (20 °С); Ррас — расчетное (рабочее) давление.
Коэффициент приведения допустимых напряжений материала к стандартной температуре определяют по формуле
где δ20, δi, — допустимое напряжение материала сосуда или его элемента соответственно при 20 °С и при расчетной температуре.
Для нелитых сосудов
Для сосудов из неметаллических материалов с ударной вязкостью более 20 Дж/см^2
а с ударной вязкостью менее 20 Дж/см^2 —
Давление контролируется двумя манометрами одного типа. Время выдержки зависит от толщины стенок сосуда (до 50 мм —10 мин; от 50 до 100 мм — 20 мин; более 100 мм — 30 мин). После выдержки давление снижается до рабочего и производится осмотр поверхности сосуда, разъемных и сварных соединений.
Сосуд считается выдержавшим гидравлические испытания, если не обнаружено:
Сосуды, работающие под давлением должны быть оснащены:
Каждый сосуд должен быть снабжен манометрами прямого действия, которые устанавливаются на штуцере сосуда или на трубопроводе между сосудом и запорной арматурой. Класс точности манометров должен быть не ниже 2,5 при рабочем давлении до 2,5 МПа; 1,5 — при рабочем давлении более 2,5 МПа. Предел измерения рабочего давления должен находиться во второй трети шкалы.
Каждый сосуд должен быть снабжен предохранительными устройствами от повышения давления выше допустимого значения.
В качестве предохранительных устройств применяют:
Предохранительные клапаны и мембраны работают по принципу слабого звена. В случае превышения давления клапан срабатывает и происходит сброс lавления.
Недостатком предохранительных рычажных и пружинных клапанов является их недостаточная работоспособность в коррозионных условиях, а также в технологических процессах, где возмож на кристаллизация, затвердение и сгущение сред, образование твердых частиц. При резком повышении давления они не успевают срабатывать из-за большой инерционности. Расчет и подбор предохранительного клапана заключается в определении количества жидкости, вышедшей из сосуда, или площади проходного сечения предохранительного устройства.
Максимальное давление в защищаемой емкости, на которое рассчитан предохранительный клапан, не должно превышать при рабочем давлении рр следующих значений:
Достоинствами мембран являются:
Недостатком мембран является то, что после срабатывания защищаемое оборудование остается открытым, что приводит к остановке технологического процесса и выбросу в атмосферу всего содержимого аппарата.
Разрывное давление мембраны определяется по формуле
где Δо — толщина материала мембраны, мм; δпр — предел прочности материала, Па; R — радиус купола мембраны, мм.
Мембраны могут устанавливаться вместо предохранительных клапанов, а также параллельно с ними для увеличения пропускной способности системы сброса давления и перед предохранительными клапанами.
Взрывные клапаны могут быть использованы вместо мембран для устранения остановки технологического процесса и выброса всего содержимого аппарата, так как после срабатывания отверстие в клапанах вновь закрывается.
К недостаткам взрывных клапанов следует отнести их большую по сравнению с мембранами инерционность, сложность конструкции и недостаточную герметичность. Они могут использоваться для взрывозащиты оборудования, работающего при нормальном давлении.