Экономико-математические методы анализа хозяйственной деятельности

1. Общая характеристика математических методов анализа
2. Экономико-математическое моделирование как способ изучения хозяйственной деятельности
3. Методы количественного анализа влияния факторов на изменение результатного показателя

1. Общая характеристика математических методов анализа

Широкое использование математических методов является важным направлением совершенствования экономического анализа, повышает эффективность анализа деятельности предприятий и их подразделений.

Это достигается за счет сокращения сроков проведения анализа, более полного охвата влияния факторов на результаты коммерческой деятельности, замены приближенных или упрощенных расчетов точными вычислениями, постановки и решения новых многомерных задач анализа, практически не выполнимых традиционными методами.

Применение математических методов в экономическом анализе деятельности предприятия требует:

  • системного подхода к изучению экономики предприятий, учета всего множества
  • существенных взаимосвязей между различными сторонами деятельности предприятий;
  • в этих условиях сам анализ все более приобретает черты системного в кибернетическом смысле слова;
  • разработки комплекса экономико-математических моделей, отражающих количественную характеристику экономических процессов и задач, решаемых с помощью экономического анализа;
  • совершенствования системы экономической информации о работе предприятий;
    наличия технических средств (компьютеров и др.), осуществляющих хранение, обработку и передачу экономической информации в целях экономического анализа;
    организации компьютерного анализа хозяйственной деятельности, создания программного обеспечения анализа в системе управления.

Вершиной сегодняшнего дня в развитии систем управления являются ВРМ-системы (Bisiness Perfomance Management — управление эффективностью бизнеса), т.е. системы, позволяющие связывать воедино все функции управления.

В рамках таких систем, например, топ-менеджеры имеют возможность анализировать и корректировать эти цифры и вносить свои новые данные. Системы позволяют им видеть и использовать отчетность смежных подразделений. Далее откорректированные и дополненные на нижнем уровне управления данные афегируются вновь до общекорпоративного уровня.

Весь процесс двунаправленного планирования оперативно повторяется до тех пор, пока не будет составлен наиболее оптимальный план. ВРМ-системы позволяют составлять несколько версий плана (бюджета), так называемые гибкие сметы на разные объемы продаж с учетом возможных отрицательных или положительных «незапланированных» факторов.

Так, в кризисные моменты есть возможность без промедления перевести организацию на «аварийный» бюджет. При этом времени на пересмотр, согласование всех статей бюджета в разрезе всех центров затрат и ответственности, естественно, не будет.

Следует отметить, что основой для дальнейшего совершенствования ВРМ-систем является их методологическое и методическое аналитическое обеспечение.

Сформулированная математически задача экономического анализа может быть решена одним из разработанных математических методов На рис. 5.1 представлена примерная схема основных математических методов, по которым ведутся работы, для использования их в анализе хозяйственной деятельности предприятий.

Признаки классификации экономико-математических методов в схеме в значительной мере условны. Методы элементарной математики используются в обычных традиционных экономических расчетах при обосновании потребностей в ресурсах, учете затрат на производство, разработке планов, проектов, балансовых расчетах и т. д. Приемы такого анализа даны в предшествующих главах.

Выделение методов классической высшей математики на схеме обусловлено тем, что они применяются не только в рамках других методов, например методов математической статистики и математического программирования, но и отдельно. Так, факторный анализ изменения многих экономических показателей может быть осуществлен с помощью дифференцирования и интегрирования.

Широкое распространение в экономическом анализе имеют методы математической статистики и теории вероятностей. Эти методы применяются в тех случаях, когда изменение анализируемых показателей можно представить как случайный процесс.

Статистические методы как основное средство изучения массовых, повторяющихся явлений играют важную роль в прогнозировании поведения экономических показателей. Когда связь между анализируемыми характеристиками не детерминированная, а стохастическая, то статистические и вероятностные методы есть практически единственный инструмент исследования. Наибольшее распространение из математико-статистических методов в экономическом анализе получили методы множественного и парного корреляционного анализа.

Для изучения одномерных статистических совокупностей используются вариационный ряд, законы распределения, выборочный метод. Для изучения многомерных статистических совокупностей применяют корреляции, регрессии, дисперсионный и факторный анализ.

Эконометрические методы строятся на синтезе трех областей знаний: экономики, математики и статистики. Основа эконометрии — экономическая модель, под которой понимается схематическое представление экономического явления или процесса при помощи научной абстракции, отражения их характерных черт.

Наибольшее распространение получил метод анализа «затраты — выпуск». Это матричные (балансовые) модели, строящиеся по шахматной схеме и позволяющие в наиболее компактной форме представить взаимосвязь затрат и результатов производства. Удобство расчетов и четкость экономической интерпретации — главные особенности матричных моделей. Это важно при создании систем автоматизированной обработки данных, при планировании производства продукции с использованием ЭВМ.

Математическое программирование — важный раздел современной прикладной математики. Методы математического (прежде всего линейного» программирования служат основным средством решения задач оптимизации хозяйственной деятельности. По своей сути эти методы есть средство плановых расчетов.

Их ценность для экономического анализа выполнения планов состоит в том, что они позволяют оценивать напряженность плановых заданий, определять лимитирующие группы оборудования, виды сырья и материалов, получать оценки дефицитности производственных ресурсов и т.п.

Под исследованием операций имеются в виду разработка методов целенаправленных действий (операций), количественная оценка полученных решений и выбор наилучшего из них. Предметом исследования операций являются экономические системы, в том числе хозяйственная деятельность предприятий.

Цель — такое сочетание структурных взаимосвязанных элементов систем, которое в наибольшей степени отвечает задаче получения наилучшего экономического показателя из ряда возможных.

Теория игр как раздел исследования операций — это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Теория массового обслуживания исследует на основе теории вероятностей математические методы количественной оценки процессов массового обслуживания. Так, любое из структурных подразделений предприятия можно представить как объект системы обслуживания.

Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений. Количество требований на обслуживание и временные интервалы между их поступлением носят случайный характер, их нельзя предсказать с однозначной определенностью. Однако в своей совокупности множество таких требований подчиняется определенным статистическим закономерностям, количественное изучение которых и является предметом теории массового обслуживания.

Экономическая кибернетика анализирует экономические явления и процессы в качестве очень сложных систем с точки зрения законов и механизмов управления и движения информации в них. Наибольшее распространение в экономическом анализе получили методы моделирования и системного анализа.

В ряде случаев приходится находить решение экстремальных задач при неполном знании механизма рассматриваемого явления. Такое решение отыскивается экспериментально. В последние годы в экономической науке усилился интерес к формализации методов эмпирического поиска оптимальных условий протекания процесса, использующих человеческий опыт и интуицию.

Эвристические методы — это неформализованные методы решения экономических задач, связанных со сложившейся хозяйственной ситуацией, на основе интуиции, прошлого опыта, экспертных оценок специалистов и т. д.

Для анализа хозяйственной деятельности многие методы из приведенной примерной схемы не нашли практического применения и только разрабатываются в теории экономического анализа. В учебнике рассматриваются основные экономико-математические методы, получившие уже применение в практике экономического анализа.

Применение того или иного математического метода в экономическом анализе опирается на методологию экономико-математического моделирования хозяйственных процессов и научно обоснованную классификацию методов и задач анализа.

По классификационному признаку оптимальности все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные и неоптимизационные. Если метод или задача позволяет искать решение по заданному критерию оптимальности, то этот метод относят в группу оптимизационных методов. В случае, когда поиск решения ведется без критерия оптимальности, соответствующий метод относят к группе неоптимизационных методов.

По признаку получения точного решения все экономико-математические методы делятся на точные и приближенные. Если алгоритм метода позволяет получить только единственное решение по заданному критерию оптимальности или без него, то данный метод относят к группе точных методов.

В случае, когда при поиске решения используется стохастическая информация и решение задачи можно получить с любой степенью точности, используемый метод относят к группе приближенных методов. К группе приближенных методов относят и такие, при применении которых не гарантируется получение единственного решения по заданному критерию оптимальности.

Таким образом, используя только два признака классификации, все экономико-математические методы делятся на четыре группы:

  • оптимизационные точные методы;
  • оптимизационные приближенные методы;
  • неоптимизационные точные методы;
  • неоптимизационные приближенные методы.

Так, к оптимизационным точным методам можно отнести методы теории оптимальных процессов, некоторые методы математического программирования и методы исследования операций.

К оптимизационным приближенным методам относятся отдельные методы математического программирования, методы исследования операций, методы экономической кибернетики, методы математической теории планирования экстремальных экспериментов, эвристические методы.

К неоптимизационным точным методам относятся методы элементарной математики и классические методы математического анализа, эконометрические методы. К неоптимизационным приближенным методам относятся метод статистических испытаний и другие методы математической статистики.

В схеме (см. рис. 5.1) были представлены укрупненные группы экономико-математических методов, отдельные методы из этих групп используются для решения различных задач как оптимизационных, так и неоптимизационных как точных, так и приближенных.
Большое значение в анализе хозяйственной деятельности имеет группировка методов (задач) балансовых и факторных. Балансовые методы — это методы анализа структуры, пропорций, соотношений.

Экономический анализ — это прежде всего факторный анализ (в широком смысле слова, а не только в виде стохастического факторного анализа).

Под экономическим факторным анализом понимаются постепенный переход от исходной факторной системы(результативный показатель) к конечной факторной системе (или наоборот), раскрытие полного набора прямых, количественно измеримых факторов, оказывающих влияние на изменение результатного показателя.

Рассмотрим примерную классификацию задач факторного анализа работы предприятий с точки зрения использования математических методов (рис. 5.2).

При прямом факторном анализе выявляются отдельные факторы, влияющие на изменение результатного показателя или процесса, устанавливаются формы детерминированной (функциональной) или стохастической зависимости между результатным показателем и определенным набором факторов и, наконец, выясняется роль отдельных факторов в изменении результатного экономического показателя.

Постановка задачи прямого факторного анализа распространяется на детерминированный и стохастический случай. Пусть у =/(х,) – некоторая функция, характеризующая изменение результатного показателя или процесса; xl5 x2, –, хп – факторы, от которых зависит функция/(х,).

В экономическом анализе, кроме задач, сводящихся к детализации показателя, к разбивке его на составляющие части, существует группа задач, где требуется увязать ряд экономических характеристик в комплексе, т. е. построить функцию, содержащую в себе основное качество всех рассматриваемых экономических показателей-аргументов, т. е. задач синтеза.

В данном случае ставится обратная задача (относительно задачи прямого факторного анализа) — задача объединения ряда показателей в комплекс. Пусть имеется набор показателей хь хь …, хп, характеризующих некоторый экономический процесс (L). Каждый из показателей односторонне характеризует процесс L.

Требуется построить функцию/О^ изменения процесса L, содержащую в себе основные характеристики всех показателей хх, х2,…. хп или некоторых из них в комплексе. В зависимости от цели исследования функция f (Xj) должна характеризовать процесс в статике или в динамике. Данная постановка задачи называется задачей обратного факторного анализа.

Задачи обратного факторного анализа могут быть детерминированными и стохастическими. Примерами задачи обратного детерминированного факторного анализа являются задачи комплексной оценки хозяйственной деятельности, а также задачи математического программирования, в том числе и линейного.

Примером задачи обратного стохастического факторного анализа могут служить производственные функции, которыми устанавливаются зависимости между величиной выпуска продукции и затратами производственных факторов (первичных ресурсов).

Для детального исследования экономических показателей или процессов необходимо проводить не только одноступенчатый, но и цепной факторный анализ: статический (пространственный) и динамический (пространственный и во времени).

Детализация факторов может быть продолжена и дальше. Закончив ее, решают обратную задачу факторного анализа, синтезируя результаты исследования для характеристики результатного показателя у. Такой метод исследования называется цепным статическим методом факторного анализа.

При применении цепного динамического факторного анализа для полного изучения поведения результатного показателя недостаточно его статического значения; факторный анализ показателя проводится на различных интервалах дробления времени, на которых исследуется показатель.

Экономический факторный анализ может быть направлен на выяснение действия факторов, формирующих результаты хозяйственной деятельности, по различным источникам пространственного или временного происхождения.

Интересно
Анализ динамических (временных) рядов показателей хозяйственной деятельности, расщепление уровня ряда на его составляющие (основную линию развития – тренд, сезонную, или периодическую, составляющую, циклическую составляющую, связанную с воспроизводственными явлениями, случайную составляющую) – задача временного факторного анализа.

Классификация задач факторного анализа упорядочивает постановку многих экономических задач, позволяет выявить общие закономерности в их решении. При исследовании сложных экономических процессов возможна комбинация постановки задач, если последние не относятся целиком к какому-либо типу, указанному в классификации.

2. Экономико-математическое моделирование как способ изучения хозяйственной деятельности

Математическое моделирование экономических явлений и процессов является важным инструментом экономического анализа. Оно дает возможность получить четкое представление об исследуемом объекте, охарактеризовать и количественно описать его внутреннюю структуру и внешние связи.

Модель — условный образ объекта управления (исследования). Модель конструируется субъектом управления (исследования) так, чтобы отобразить характеристики объекта — свойства, взаимосвязи, структурные и функциональные параметры и т. п., существенные для цели управления (исследования).

Содержание метода моделирования составляют конструирование модели на основе предварительного изучения объекта и выделения его существенных характеристик, экспериментальный или теоретический анализ модели, сопоставление результатов с данными об объекте, корректировка модели.

В экономическом анализе используются главным образом математические модели, описывающие изучаемое явление или процесс с помощью уравнений, неравенств, функций и других математических средств.

Различают математические модели:

  • с количественными характеристиками, записанными в виде формул;
  • числовые модели с конкретными числовыми характеристиками;
  • логические, записанные с помощью логических выражений, и графические, выраженные в графических образах. Модели, реализованные с помощью электронно-вычислительных машин, называют машинными, или электронными.

Экономико-математическая модель должна быть адекватной действительности, отражать существенные стороны и связи изучаемого объекта. Отметим принципиальные черты, характерные для построения экономико-математической модели любого вида.

Процесс моделирования можно условно подразделить на три этапа:

  • анализ теоретических закономерностей, свойственных изучаемому явлению или процессу, и эмпирических данных о его структуре и особенностях на основе такого анализа формируются модели;
  • определение методов, с помощью которых можно решить задачу;
  • анализ полученных результатов.

При экономико-математическом моделировании часто возникает ситуация, когда изучаемая экономическая система имеет слишком сложную структуру, не разработаны математические методы, схемы, которые бы охватывали все основные особенности и связи этой системы. Такой экономической системой, например, является экономика предприятия в целом, в ее динамике, развитии.

Возникает необходимость упрощения изучаемого объекта, исключения из анализа некоторых его второстепенных особенностей с тем, чтобы подвести эту упрощенную систему под класс уже известных структур, поддающихся математическому описанию и анализу. При этом степень упрощения должна быть такой, чтобы все существенные для данного экономического объекта черты в соответствии с целью исследования были включены в модель.

Важным моментом первого этапа моделирования является четкая формулировка конечной цели построения модели, а также определение критерия, по которому будут сравниваться различные варианты решения. В экономическом анализе такими критериями могут быть: наибольшая прибыль, наименьшие издержки производства, максимальная загрузка оборудования, производительность труда и др.

В задачах математического программирования такой критерий отражается целевой функцией. Например, необходимо проанализировать производственную программу выработки продукции с целью выявления резервов повышения прибыли от воздействия структурного сдвига в ассортименте. Критерием оптимальности в данном случае при построении экономико-математической модели выступает максимум прибыли.

Уравнение целевой функции будет иметь вид:

При постановке задач математического программирования обычно предполагается ограниченность ресурсов, которые необходимо распределить на производство продукции.

Поэтому очень важно определить, какие ресурсы являются для изучаемого процесса решающими и в то же время лимитирующими, каков их запас. Если все виды производственных ресурсов, к которым от- носятся сырье, трудовые ресурсы, мощность оборудования и др., используются для выпуска продукции, то необходимо знать рас- ход каждого вида ресурса на единицу продукции.

Все ограничения, отражающие экономический процесс, должны быть непротиворечивыми, т.е. должно существовать хотя бы одно решение задачи, удовлетворяющее всем ограничениям.

В качестве ограничений при построении экономико-математической модели выступает система неравенств, имеющая следующий вид:

Объединяя уравнение целевой функции и систему ограничений в единую модель, получим линейную экономико-математическую модель ассортиментной задачи:

Не для всякой экономической задачи нужна собственная модель. Некоторые процессы с математической точки зрения однотипны и могут описываться одинаковыми моделями. Например, в линейном программировании, теории массового обслуживания и других существуют типовые модели, к которым приводится множество конкретных задач.

Вторым этапом моделирования экономических процессов является выбор наиболее рационального математического метода для решения задачи. Например, для решения задач линейного программирования известно много методов: симплексный, потенциалов и др.

Лучшей моделью является не самая сложная и самая похожая на реальное явление или процесс, а та, которая позволяет получить самое рациональное решение и наиболее точные экономические оценки.

Излишняя детализация затрудняет построение модели, часто не дает каких-либо преимуществ в анализе экономических взаимосвязей и не обогащает выводов. Излишнее укрупнение модели приводит к потере существенной экономической информации и иногда даже к неадекватному отражению реальных условий.

Третьим этапом моделирования является всесторонний анализ результата, полученного при изучении экономического явления или процесса. Окончательным критерием достоверности и качества модели являются: практика, соответствие полученных результатов и выводов реальным условиям хозяйствования, экономическая содержательность полученных оценок.

Если полученные результаты не соответствуют реальным условиям, то необходим экономический анализ причин несоответствия. Такими причинами могут быть: недостаточная достоверность информации, а также несоответствие используемых математических средств и схем особенностям и сущности изучаемого экономического объекта. После того как причина определена, в модель должны быть внесены соответствующие коррективы, и решение задачи повторяется.

Таким образом, экономико-математическое моделирование работы предприятия должно быть основано на анализе его деятельности и, в свою очередь, обогащать этот анализ результатами и выводами, полученными после решения соответствующих задач.

Построение, или моделирование, конечной факторной системы для анализируемого экономического показателя хозяйственной деятельности может быть осуществлено как формальным, так и эвристическим путем на основе качественного анализа сущности экономического явления, отражаемого через данный результатный показатель.

Моделирование факторной системы основывается на следующих экономических критериях выделения факторов как элементов факторной системы: причинности, достаточной специфичности, самостоятельности существования, учетной возможности. С формальной точки зрения факторы, включаемые в факторную систему, должны быть количественно измеримыми.

В детерминированном моделировании факторных систем можно выделить небольшое число типов конечных факторных систем, наиболее часто встречающихся в анализе хозяйственной деятельности:

Применительно к классу детерминированных факторных систем различают следующие основные приемы моделирования.

В данном случае имеем конечную факторную систему вида. Таким образом, сложный процесс формирования уровня изучаемого показателя хозяйственной деятельности может быть разложен различными приемами на его составляющие (факторы) и представлен в виде модели детерминированной факторной системы.

Например, исследуя процесс формирования объема продаж продукции у, можно использовать для анализа такие детерминированные факторные системы:

Модели 1—3 отражают процесс последовательной детализации влияния факторов на изменение объема продаж как обобщающего показателя. Аналогичные модели могут быть построены и для других показателей хозяйственной деятельности.

В основе детерминированного моделирования факторной системы лежит возможность построения тождественного преобразования для исходной формулы экономического показателя по теоретически предполагаемым прямым связям последнего с другими показателями-факторами.

Детерминированное моделирование факторных систем — это простое и эффективное средство формализации связи экономических показателей оно служит основой для количественной оценки роли отдельных факторов в динамике изменения обобщающего показателя.

Детерминированное моделирование факторных систем ограничено длиной факторного поля прямых связей. При недостаточном уровне знаний о природе прямых связей того или иного показателя хозяйственной деятельности часто необходим иной подход к познанию объективной действительности. Размах количественных изменений экономических показателей можно выяснить только стохастическим анализом массовых эмпирических данных.

Стохастический анализ направлен на изучение косвенных связей, т.е. опосредованных факторов (в случае невозможности определения непрерывной цепи прямой связи). Из этого вытекает важный вывод о соотношении детерминированного и стохастического анализа: так как прямые связи необходимо изучать в первую очередь, то стохастический анализ носит вспомогательный характер.

Стохастический анализ выступает в качестве инструмента углубления детерминированного анализа факторов, по которым нельзя построить детерминированную модель.

Стохастическое моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности опирается на обобщение закономерностей варьирования значений экономических показателей — количественных характеристик факторов и результатов хозяйственной деятельности.

Количественные параметры связи выявляются на основе сопоставления значений изучаемых показателей в совокупности хозяйственных объектов или периодов. Таким образом, первой предпосылкой стохастического моделирования является возможность составить совокупность наблюдений, т.е. возможность повторно измерить параметры одного и того же явления в различных условиях.

При детерминированном факторном анализе модель изучаемого явления не изменяется по хозяйственным объектам и периодам (так как соотношения соответствующих основных категорий стабильны). При необходимости сравнения результатов деятельности отдельных хозяйств или одного хозяйства в отдельные периоды может возникать лишь вопрос о сопоставимости выявленных на основе модели количественных аналитических результатов.

В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений.

Это означает, что варьирование значений показателей должно происходить в пределах однозначной определенности качественной стороны явлений, характеристиками которых являются моделируемые экономические показатели (в пределах варьирования не должно происходить качественного скачка в характере отражаемого явления).

Значит, второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).

Изучаемая закономерность изменения экономических показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной ковариации).

Из этого вытекает третья предпосылка стохастического анализа — достаточная размерность (численность) совокупности наблюдений, позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые связи). Уровень надежности и точности модели определяется практическими целями использования модели в управлении хозяйственной деятельностью.

Четвертая предпосылка стохастического подхода — наличие методов, позволяющих выявить количественные параметры связей экономических показателей из массовых данных варьирования уровня показателей. Математический аппарат применяемых методов иногда предъявляет специфические требования к моделируемому эмпирическому материалу. Выполнение данных требований является важной предпосылкой применяемости методов и достоверности полученных результатов.

Основная особенность стохастического факторного анализа заключается в том, что при стохастическом анализе нельзя составлять модель путем качественного (теоретического) анализа, необходим количественный анализ эмпирических данных.

В экономических исследованиях нашли применение следующие математико-статистические методы стохастического моделирования хозяйственных явлений и процессов:

  • оценка связи и корреляции между показателями;
  • оценка статистической значимости связей; регрессионный анализ;
  • выявление параметров периодических колебаний экономических показателей;
  • группировка многомерных наблюдений, дисперсионный анализ;
  • современный
  • факторный (компонентный) анализ; трансформационный анализ.

Необходимость включения математико-статистических методов в методику анализа хозяйственной деятельности предприятий зависит от значимости решаемых при помощи данных методов количественных (статистических) задач.

Можно выделить следующие наиболее типичные классы задач в экономическом анализе:

  • изучение наличия, направления и интенсивности связи экономических показателей;
  • ранжировка и классификация факторов экономических явлений;
  • выявление аналитической формы связи между показателями;
  • сглаживание (выявление тренда) динамики изменения уровня показателей;
  • выявление параметров закономерных периодических колебаний уровня показателей;
  • ранжировка и классификация хозяйств (предприятий и их подразделений);
  • изучение размерности (сложности, многогранности) экономических явлений;
  • выявление наиболее информативных (обобщающих) синтетических показателей;
  • изучение внутренней структуры связей в системе экономических показателей;
    сравнение структуры связей в разных совокупностях.

Общие направления применения математико-статистических методов в решении выявленных обобщенных статистических задач экономического анализа представлены в табл. 5.1.

Самая общая и типичная статистическая задача в экономическом анализе изучение наличия, направления и интенсивности связей между показателями. Это первый этап познания закономерностей формирования результатов хозяйственной деятельности.

Предположение о наличии и тесноте связи делается в случае выявления общих закономерностей в вариации значений изучаемых показателей. Источник возникновения этих общих закономерностей может быть разным – причинно-следственная связь между показателями, зависимость от общего фактора, случайное совпадение элементов вариации.

Задача экономического анализа — раскрыть качественную основу взаимосвязи между количественными характеристиками экономических процессов. Стохастическое исследование связи происходит с помощью методов корреляционного анализа — коэффициентов и отношений корреляции.

При этом в зависимости от характера исходной информации применяются разные приемы корреляционного анализа:

  • оценка парной корреляции между показателями с цифровой шкалой измерения;
    ранговая корреляция и коэффициенты, рассчитанные по так называемым матрицам
  • сопряженности для анализа связей между качественными показателями;
  • каноническая корреляция для анализа связи между группами показателей;
  • частная корреляция, которая позволяет исследовать связь между двумя показателями, элиминируя влияние других показателей;
  • множественная корреляция для оценки зависимости одного показателя от группы аргументных показателей.

В случае нелинейности связи и при изучении множественной корреляции задача определения тесноты связи соотносится с проблемой изучения аналитической формы связи (коэффициент, или отношение, корреляции в этом случае прямо зависит от выбранной формы связи). Выявление аналитической формы связи означает моделирование хозяйственного процесса путем выявления закономерностей формирования значений результатного показателя под влиянием факторных показателей.

Это основная и самая сложная задача в экономическом анализе, которая при стохастическом подходе решается методом регрессионного анализа. Изучение интенсивности и аналитической формы связей между показателями с помощью методов корреляционного и регрессионного анализа позволяет решать важную для экономического анализа статистическую задачу — ранжировку и классификацию факторов, влияющих на анализируемое экономическое явление.

Можно выделять существенные и не существенные для данного явления факторы, группу факторов, позволяющих с достаточной точностью управлять функционированием экономических систем, а также ранжировать факторы по интенсивности их влияния на изучаемое явление или процесс.

Определенное развитие в специальной литературе и в практических исследованиях нашли статистические проблемы исследования временных рядов. Временные ряды экономических показателей имеют в общем случае две особенности по сравнению с пространственными совокупностями — тенденция в изменении значений показателей и периодические колебания уровня экономических показателей.

Поскольку основные математико-статистические методы (в частности, методы исследования связей) предназначены для исследования стационарных статистических рядов, где отсутствуют систематические (закономерные) тенденции изменения уровня показателя, то возникает задача исключения этих тенденций из временных рядов.

Для этой цели разработано множество методов. После исключения тренда в зависимости от характера динамики применяются уже специально разработанные методы анализа динамических процессов или модификации известных аналитических приемов.

Моделирование и анализ периодических колебаний экономических показателей имеют большое значение в управлении хозяйственной деятельностью, в частности на предприятиях с сезонным характером производства, в торговле и т. д. Для моделирования периодических колебаний применяются методы спектрального и гармонического анализа. Такие исследования позволяют более точно и обоснованно разрабатывать плановые задания, уточнять мероприятия по улучшению организации труда и производства.

Интересно
Классификация и ранжировка хозяйственных объектов являются одними из важнейших задач экономического анализа. Выявление классов однотипных предприятий для разработки общих нормативов планирования, оценки, стимулирования и ранжировки хозяйственных объектов по результатам хозяйственной деятельности давно внедрилось в экономический анализ.

Новые возможности повышения качества решения этих задач появляются в результате применения таких методов, как группировка многомерных наблюдений, дисперсионный анализ, в частности современный факторный и компонентный анализ, кластерный анализ. Предпочтительным для аналитических целей наряду со специальными приемами классификации является исследование структуры совокупности хозяйственных объектов методами современного факторного (компонентного) анализа.

Синтетические факторы или компоненты, выявленные на основе внутренних связей системы экономических показателей, характеризуют отдельные самостоятельные стороны экономических явлений (технический уровень производства, уровень управленческой работы, уровень организации производства и труда и т. п.) и имеют вполне определенную содержательную экономическую интерпретацию. Поэтому классификация и ранжировка хозяйственных объектов по значениям этих факторов или компонент носят более значительную аналитическую нагрузку, чем группировка на основе гетерогенного набора признаков.

С развитием применения методов современного факторного анализа связана также возможность эффективного решения следующих трех обобщенных статистических задач экономического анализа:

  • изучение размерности описания экономического явления, выявление более информативных показателей;
  • изучение внутренней структуры связей в системе показателей.

Хотя эти задачи можно решить методами корреляционного и регрессионного анализа, однако при экономическом анализе их следует решать на основе методов современного факторного анализа.

Изучение внутренней структуры связей в системе показателей имеет большое аналитическое значение, так как позволяет познавать механизм функционирования экономического объекта, что является целью большинства задач экономического анализа.

Решение этой проблемы на основе результатов корреляционного анализа (матриц коэффициентов корреляции) связано с большими трудностями, особенно при большом наборе показателей. Невозможно проследить за относительно длинными цепями связей между явлениями, чтобы выявить общие причины этих связей.

Современный факторный анализ выявляет в виде синтетических факторов главные причины формирования данной системы связей между показателями и позволяет познавать структуру этих связей, прослеживая связи экономических показателей с синтетическими факторами. Последняя система отличается меньшей размерностью и упорядочением представления связей, имея в результате этого большое аналитическое значение.

Выявление при помощи современного факторного анализа синтетических факторов, которые описывают основную информацию о поведении данной системы экономических показателей, решает проблему размерности описания экономических явлений. Включение новых показателей в анализ целесообразно только в том случае, если они содержат дополнительную существенную информацию о функционировании экономических систем, так как сбор и обработка информации для составления новых показателей связаны с материальными и трудовыми затратами.

Синтетические факторы, выявленные методами современного факторного анализа, могут служить новыми, более информативными комплексными показателями функционирования предприятий. Такие показатели нужны для комплексной оценки результатов хозяйственной деятельности и организационно-технического уровня производства, так как они отражают всю имеющуюся информацию.

Последней обобщенной статистической задачей в экономическом анализе является сравнение структуры связей в разных совокупностях. Сравнения могут быть пространственные и временные. При пространственных сравнениях исследуются информационная емкость разных систем показателей и различия в структуре связей в разных совокупностях хозяйственных объектов.

Такие сравнения позволяют оценить возможность перенесения выводов, сделанных на основе анализа одной совокупности, на другие совокупности, которые подобны первой по своей внутренней структуре. Временные сравнения выявляют тенденции изменения структуры связей в соответствии с развитием экономического явления.

В литературе представлены примеры сравнения моделей множественной регрессии. Для сравнения факторных моделей разработаны методы трансформационного анализа. К сожалению, последние не нашли применения в экономическом анализе.
Значение выделения и систематизации обобщенных статистических задач состоит в том, что они позволяют применять математико-статистические методы в аналитической работе.

В решении любой задачи анализа хозяйственной деятельности предприятий можно и необходимо использовать методы математической статистики, соответствующие обобщенным статистическим задачам (см. табл. 5.1).

Математический аппарат вышеуказанных экономико-статистических методов нашел достаточное отражение в учебниках по теории статистики.

3. Методы количественного анализа влияния факторов на изменение результатного показателя

В анализе хозяйственной деятельности, который иногда называют бухгалтерским анализом, преобладают методы детерминированного моделирования факторных систем, которые дают точную (а не с некоторой вероятностью, характерной для стохастического моделирования), сбалансированную характеристику влияния факторов на изменение результатного показателя. Но достигается эта сбалансированность разными методами. Рассмотрим основные методы детерминированного факторного анализа.

Метод дифференциального исчисления. Теоретической основой для количественной оценки роли отдельных факторов в динамике результатного обобщающего показателя является дифференцирование.

В методе дифференциального исчисления предполагается, что общее приращение функции (результирующего показателя) разлагается на слагаемые, где значение каждого. Из них определяется как произведение соответствующей частной производной на приращение переменной, по которой вычислена данная производная. Рассмотрим задачу нахождения влияния факторов на изменение результирующего показателя методом дифференциального исчисления на примере функции от двух переменных.

Пусть задана функция z —fix, у) тогда, если функция дифференцируема, ее приращение можно выразить как:

Эта величина в расчетах отбрасывается (ее часто обозначают г — эпсилон). Влияние фактора х и у на изменение z определяется в этом случае как:

а их сумма представляет собой главную, линейную относительно приращения фактора часть приращения дифференцируемой функции.

Следует отметить, что параметр О (VА*2 + Ау2) мал при достаточно малых изменениях факторов и его значения могут существенно отличаться от нуля при больших изменениях факторов. Так как этот метод дает однозначное разложение влияния факторов на изменение результирующего показателя, то это разложение может привести к значительным ошибкам в оценке влияния факторов, поскольку в ней не учитывается величина остаточного члена, т. е.

Таким образом, в методе дифференциального исчисления так называемый неразложимый остаток, который интерпретируется как логическая ошибка метода дифференцирования, просто отбрасывается. В этом состоит «неудобство» дифференцирования для экономических расчетов, в которых, как правило, требуется точный баланс изменения результатного показателя и алгебраической суммы влияния всех факторов.

Индексный метод определения факторов на обобщающий показатель. В статистике, планировании и анализе хозяйственной деятельности основой для количественной оценки роли отдельных факторов в динамике изменений обобщающих показателей являются индексные модели.

Так, изучая зависимость объема продаж продукции на предприятии от изменений численности работающих и производительности их труда, можно воспользоваться следующей системой взаимосвязанных индексов:

Приведенные формулы показывают, что общее относительное изменение объема продукции образуется как произведение относительных изменений двух факторов: численности работающих и производительности их труда. Формулы отражают принятую в статистике практику построения факторных индексов, суть которой можно сформулировать следующим образом.

Еслиобобщающийэкономическийпоказательпредставляетсобойпроизведениеколичественного (объемного) и качественного показателей-факторов, то при определении влияния количественного фактора качественный показатель фиксируется на базисном уровне, а при определении влияния качественного фактора количественный показатель фиксируется на уровне отчетного периода.

Индексный метод позволяет провести разложение по факторам не только относительных, но и абсолютных отклонений обобщающего показателя.

В нашем примере формула (1) позволяет вычислить величину абсолютного отклонения (прироста) обобщающего показателя — объема продукции предприятия:

Это отклонение образовалось под влиянием изменений численности работающих и производительности их труда. Чтобы определить, какая часть общего изменения объема продукции достигнута за счет изменения каждого из факторов в отдельности, необходимо при расчете влияния одного из них элиминировать влияние другого фактора.

Формула (2) соответствует данному условию. В первом сомножителе элиминировано влияние производительности труда, во втором — численности работающих, следовательно, прирост объема продукции за счет изменения численности работающих определяется как разность между числителем и знаменателем первого сомножителя:

Прирост объема продукции за счет изменения производительности труда работающих определяется аналогично по второму сомножителю:

Изложенный принцип разложения абсолютного прироста (отклонения) обобщающего показателя по факторам пригоден для случая, когда число факторов равно двум (один из них количественный, другой качественный), а анализируемый показатель представлен как их произведение.

Теория индексов не дает общего метода разложения абсолютных отклонений обобщающего показателя по факторам при числе факторов более двух и если их связь не является мультипликативной.

Метод цепных подстановок (метод разниц). Этот метод заключается в получении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на фактические. Разность двух промежуточных значений обобщающего показателя в цепи подстановок равна изменению обобщающего показателя, вызванного изменением соответствующего фактора.

Метод цепных подстановок, как и индексный, имеет недостатки, о которых следует знать при его применении. Во-первых, результаты расчетов зависят от последовательности замены факторов, во-вторых, активная роль в изменении обобщающего показателя необоснованно часто приписывается влиянию изменения качественного фактора.

Группируя в этой формуле последнее слагаемое с одним из первых, получаем два различных варианта цепных подстановок.

На практике обычно применяется первый вариант при условии, что х — качественный фактор, а у — количественный. В этой формуле выявляется влияние качественного фактора на изменение обобщающего показателя, т. е. выражение (у0 + Ау)Ах более активно, поскольку величина его устанавливается умножением приращения качественного фактора на отчетное значение количественного фактора. Тем самым весь прирост обобщающего показателя за счет совместного изменения факторов приписывается влиянию только качественного фактора.

Таким образом, задача точного определения роли каждого фактора в изменении обобщающего показателя обычным методом цепных подстановок не решается. В этой связи особую актуальность приобретает поиск путей совершенствования точного однозначного определения роли отдельных факторов в условиях внедрения в экономическом анализе сложных экономико-математических моделей факторных систем.

Интересно
Стоит задача нахождения рациональной вычислительной процедуры (метода факторного анализа), при которой устраняются условности и допущения и достигается получение однозначного результата величин влияния факторов.

Метод простого прибавления неразложимого остатка. Не находя достаточно полного обоснования, что делать с остатком, в практике экономического анализа стали использовать прием прибавки неразложимого остатка к качественному или количественному (основному или производному) фактору, а также делить этот остаток между факторами поровну. Последнее предложение теоретически обосновано С. М. Югенбургом 1104, с. 66 — 831.

С учетом изложенного можно получить следующий набор формул.

Первый вариант

Существуют и другие предложения, которые используются в практике экономического анализа редко. Например, отнести АхАу ко второму слагаемому с коэффициентом, равным а остаток присоединить к первому слагаемому.

Эту методику защищал В. Е. Адамов. Он считал, что «несмотря на все возражения, — единственно практически неприемлемым, хотя и основанным на определенных соглашениях о выборе весов индексов, будет метод взаимосвязанного изучения влияния факторов с использованием в индексе качественного показателя весов отчетного периода, а в индексе объемного показателя — весов базисного периода».

Описанный метод хотя и снимает проблему «неразложимого остатка», но связан с условием определения количественных и качественных факторов, что усложняет задачу при использовании больших факторных систем.

Одновременно разложение общего прироста результатного показателя цепным методом зависит от последовательности подстановки. В этой связи получить однозначное количественное значение отдельных факторов без соблюдения дополнительных условий не представляется возможным.

Метод взвешенных конечных разностей. Этот метод состоит в том, что величина влияния каждого фактора определяется как по первому, так и по второму порядку подстановки, затем результат суммируется и от полученной суммы берется средняя величина, дающая единый ответ о значении влияния фактора. Если в расчете участвует больше факторов, то их значения рассчитываются по всем возможным подстановкам.

Опишем этот метод математически, используя обозначения, принятые выше.

Как видно, метод взвешенных конечных разностей учитывает все варианты подстановок. Одновременно при усреднении нельзя получить однозначное количественное значение отдельных факторов. Этот метод весьма трудоемкий и по сравнению с предыдущим методом усложняет вычислительную процедуру, так как приходится перебирать все возможные варианты подстановок.

В своей основе метод взвешенных конечных разностей идентичен (только для двухфакторной мультипликативной модели) методу простого прибавления неразложимого остатка при делении этого остатка между факторами поровну.

Это подтверждается следующим преобразованием формулы:

Следует заметить, что с увеличением количества факторов, а значит, и количества подстановок, описанная идентичность методов не подтверждается.

Логарифмический метод. Этот метод, описанный В. Федоровой и Ю. Егоровым, состоит в том, что достигается логарифмически пропорциональное распределение остатка по двум искомым факторам. В этом случае не требуется установления очередности действия факторов.

Математически этот метод описывается следующим образом. Факторную систему z — ху можно представить в виде Igz = lgx + lgy, тогда:

Выражение (4) для Az представляет собой не что иное, как его логарифмическое пропорциональное распределение по двум искомым факторам. Именно поэтому авторы такого подхода назвали этот метод «логарифмическим методом разложения приращения Az на факторы».

Особенность логарифмического метода разложения состоит в том, что он позволяет определить безостаточное влияние не только двух, но и многих изолированных факторов на изменение результатного показателя, не требуя установления очередности действия.

В более общем виде этот метод был описан еще А. Хумалом, который писал: «Такое разделение прироста произведения может быть названо нормальным.

Название оправдывается тем, что по- лученное правило разделения остается в силе при любом числе сомножителей, а именно: прирост произведения разделяется между переменными сомножителями пропорционально логарифмам их коэффициентов изменения».

Действительно, в случае наличия большего числа сомножителей в анализируемой мультипликативной модели факторной системы (например, z суммарное приращение результативного показателя составит:

Разложение прироста на факторы достигается за счет ввода коэффициента к, который в случае равенства нулю или взаимного погашения факторов не позволяет использовать указанный метод. Формулу (4) для можно записать иначе:

В таком виде эта формула (5) в настоящее время используется как классическая, описывающая логарифмический метод анализа. Из этой формулы следует, что общее приращение результатного показателя распределяется по факторам пропорционально отношению логарифмов факторных индексов к логарифму результатного показателя. При этом не имеет значения, какой логарифм используется (натуральный inN или десятичный IgN).

Основным недостатком логарифмического метода анализа является то, что он не может быть «универсальным», его нельзя применять при анализе любого вида моделей факторных систем. Если при анализе мультипликативных моделей факторных систем при использовании логарифмического метода достигается получение точных величин влияния факторов (в случае, когда Дг = 0), то при таком же анализе кратных моделей факторных систем получение точных величин влияния факторов не удается.

Так, если краткую модель факторной системы представить в виде

Таким подходом воспользовались Д. И. Вайншенкер и В. М. Иванченко при анализе выполнения плана по рентабельности. При определении величины прироста рентабельности за счет прироста прибыли они воспользовались коэффициентом к’х.

Не получив точного результата при последующем анализе, Д. И. Вайншенкер и В. М. Иванченко ограничились применением логарифмического метода лишь на первом этапе (при определении фактора Az’x).

Последующие величины влияния факторов они получили при помощи пропорционального (структурного) коэффициента L, который представляет собой не что иное, как удельный вес прироста одного из факторов в общем приросте составляющих факторов. Математическое содержание коэффициента L идентично «способу долевого участия», описанному ниже. Если в краткой модели факторной системы.

Следует заметить, что последующее расчленение фактора Az’y методом логарифмирования на факторы Az’c и Az’q осуществить на практике не удается, так как логарифмический метод в своей сути предусматривает получение логарифмических отклонений, которые для расчленяющихся факторов будут примерно одинаковыми. Именно в этом и заключается недостаток описанного метода.

Применение «смешанного» подхода в анализе кратных моделей факторных систем не решает проблемы получения изолированного значения из всего набора факторов, оказывающих влияние на изменение результатного показателя. Присутствие приближенных вычислений величин факторных изменений доказывает несовершенство логарифмического метода анализа.

Метод коэффициентов. Этот метод, описанный И. А. Белобжецким, основан на сопоставлении числового значения одних и тех же базисных экономических показателей при разных условиях.

И. А. Белобжецкий предложил определять величины влияния факторов следующим образом:

Описанный метод коэффициентов подкупает своей простотой, но при подстановке цифровых значений в формулы результат у И. А. Белобжецкого получился правильным лишь случайно.

При точном выполнении алгебраических преобразований результат суммарного влияния факторов не совпадает с величиной изменения результатного показателя, полученного прямым расчетом.

Метод дробления приращений факторов. В анализе хозяйственной деятельности наиболее распространенными являются задачи прямого детерминированного факторного анализа. С экономической точки зрения к таким задачам относится проведение анализа выполнения плана или динамики экономических показателей, при котором рассчитывается количественное значение факторов, оказавших влияние на изменение результатного показателя.

С математической точки зрения задачи прямого детерминированного факторного анализа представляют исследование функции нескольких переменных. Дальнейшим развитием метода дифференциального исчисления явился метод дробления приращений факторных признаков, при котором следует вести дробление приращения каждой из переменных на достаточно малые отрезки и осуществлять пересчет значений частных производных при каждом (уже достаточно малом) перемещении в пространстве. Степень дробления принимается такой, чтобы суммарная ошибка не влияла на точность экономических расчетов.

Отсюда приращение функции z —f{x, у) можно представить в общем виде следующим образом:

Метод дробления приращений факторных признаков имеет преимущества перед методом цепных подстановок. Он позволяет определить однозначно величину влияния факторов при заранее заданной точности расчетов, не связан с последовательностью подстановок и выбором качественных и количественных показателей факторов.

Метод дробления требует соблюдения условий дифференцируемости функции в рассматриваемой области.

Интегральный метод оценки факторных влияний. Дальнейшим логическим развитием метода дробления приращений факторных признаков стал интегральный метод факторною анализа. Этот метод, как и предыдущий, разработан и обоснован А. Д.

Шереметом и его учениками Он основывается на суммировании приращений функции, определенной как частная производная, умноженная на приращение аргумента на бесконечно малых промежутках.

При этом должны соблюдаться следующие условия:

  • непрерывная дифференцируемость функции, где в качестве аргумента используется экономический показатель;
  • функция между начальной и конечной точками элементарного периода изменяется по прямой Ге;
  • постоянство соотношения скоростей изменения факторов.

В общем виде формулы расчета количественных величин влияния факторов на изменение результирующего показателя (для функции z= f(x,у)—любого вида) выводятся следующим образом, что соответствует предельному случаю, когда п -» оо:

В реальных экономических процессах изменение факторов в области определения функции может происходить не по прямолинейному отрезку Ге, а по некоторой ориентированной кривой Г.

Но так как изменение факторов рассматривается за элементарный период (т. е. за минимальный отрезок времени, в течение которого хотя бы один из факторов получит приращение), то траектория Г определяется единственно возможным способом — прямолинейным ориентированным отрезком Ге, соединяющим начальную и конечную точки элементарного периода. Выведем формулу для общего случая.

Задана функция изменения результирующего показателя от факторов:

Предположим, что показатель у получил приращение Ау за анализируемый период; пусть функция у =f(xl, x2,…, хт) дифференцируема и у —fxj (хь х2, …, хт) — частная производная от этой функции по аргументу ху.

Допустим, — отрезок прямой, соединяющей две точки и M’+I (/’ =1,2, …, п — Г). Тогда параметрическое уравнение этой прямой можно записать в виде

Элемент этой матрицы характеризует вклад его показателя в изменение результирующего показателя за период. Просуммировав значения таблицам матрицы, получим следующую строку:

Значение любого /-го элемента этой строки характеризует вклад у-го фактора в изменение результирующего показателя Ау. Сумма всех Ау,(/ = 1,2,…, т) составляет полное приращение результирующего показателя.

Можно выделить два направления практического использования интегрального метода в решении задач факторного анализа. К первому направлению можно отнести задачи факторного анализа, когда не имеется данных об изменении факторов внутри анализируемого периода или от них можно абстрагироваться, т. е. имеет место случай, когда этот период следует рассматривать как элементарный.

В этом случае расчеты следует вести по ориентированной прямой Ге. Этот тип задач факторного анализа можно условно именовать статическим, так как при этом участвующие в анализе факторы характеризуются неизменностью положения по отношению к одному фактору, постоянством условий анализа измеряемых факторов независимо от нахождения их в модели факторной системы. Соизмерение приращений факторов происходит по отношению к одному выбранному для этой цели фактору.

К статическим типам задач интегрального метода факторного анализа следует относить расчеты, связанные с анализом выполнения плана или динамики (если сравнение ведется с предшествующим периодом) показателей. В этом случае данных об изменении факторов внутри анализируемого периода нет.

Ко второму направлению можно отнести задачи факторного анализа, когда имеется информация об изменениях факторов внутри анализируемого периода и она должна приниматься во внимание, т. е. случай, когда этот период в соответствии с имеющимися данными разбивается на ряд элементарных.

При этом расчеты следует вести по некоторой ориентированной кривой Г, соединяющей точку (х0, у0) и точку (хи у{) для двухфакторной модели. Задача состоит в том, как определить истинный вид кривой Г, по которой происходило во времени движение факторов х у. Этот тип задач факторного анализа можно условно именовать динамическим, так как при этом участвующие в анализе факторы изменяются в каждом разбиваемом на участки периоде.

К динамическим типам задач интегрального метода факторного анализа следует относить расчеты, связанные с анализом временных рядов экономических показателей. В этом случае можно подобрать, хотя и приближенно, уравнение, описывающее поведение анализируемых факторов во времени за весь рассматриваемый период. При этом в каждом разбиваемом элементарном периоде может быть принято индивидуальное значение, отличное от других.

Интегральный метод факторного анализа находит применение в практике компьютерного детерминированного экономического анализа.

Статический тип задач интегрального метода факторного анализа — наиболее разработанный и распространенный тип задач в детерминированном экономическом анализе хозяйственной деятельности управляемых объектов.

В сравнении с другими методами рациональной вычислительной процедуры интегральный метод факторного анализа устранил неоднозначность оценки влияния факторов и позволил получить наиболее точный результат. Результаты расчетов по интегральному методу существенно отличаются от того, что дает метод цепных подстановок или модификации последнего. Чем больше величина изменений факторов, тем разница значительнее.

Интересно
Метод цепных подстановок (его модификации) в своей основе слабее учитывает соотношение величин измеряемых факторов. Чем больше разрыв между величинами приращений факторов, входящих в модель факторной системы, тем сильнее реагирует на это интегральный метод факторного анализа.

В отличие от цепного метода в интегральном методе действует логарифмический закон перераспределения факторных нагрузок, что свидетельствует о его больших достоинствах. Этот метод объективен, поскольку исключает какие-либо предложения о роли факторов до проведения анализа. В отличие от других методов факторного анализа при интегральном методе соблюдается положение о независимости факторов.

Важной особенностью интегрального метода факторного анализа является то, что он дает общий подход к решению задач самого разного вида независимо от количества элементов, входящих в модель факторной системы, и формы связи между ними.

Вместе с тем в целях упрощения вычислительной процедуры разложения приращения результирующего показателя на факторы следует придерживаться двух групп (видов) факторных моделей: мультипликативных и кратных. Вычислительная процедура интегрирования одна и та же, а получаемые конечные формулы расчета факторов различны.

Формирование рабочих формул интегрального метода для мультипликативных моделей. Применение интегрального метода факторного анализа в детерминированном экономическом анализе наиболее полно решает проблему получения однозначно определяемых величин влияния факторов.

Появляется потребность в формулах расчета влияния факторов для множества видов моделей факторных систем (функций). Выше было установлено, что любую модель конечной факторной системы можно привести к двум видам — мультипликативной и кратной. Это условие предопределяет то, что исследователь имеет дело с двумя основными видами моделей факторных систем, так как остальные модели — это их разновидности.

Операция вычисления определенного интеграла по заданной подынтегральной функции и заданному интервалу интегрирования выполняется по стандартной программе, заложенной в память машины. В этой связи задача сводится лишь к построению подынтегральных выражений, которые зависят от вида функции или модели факторной системы.

Для облегчения решения задачи построения подынтегральных выражений в зависимости от вида модели факторной системы (мультипликативные или кратные) предложим матрицы исходных значений для построения подынтегральных выражений элементов структуры факторной системы.

Принцип, заложенный в матрицах, позволяет построить подынтегральные выражения элементов структуры факторной системы для любого набора элементов модели конечной факторной системы. В основном построение подынтегральных выражений элементов структуры факторной системы — процесс индивидуальный, и в случае, когда число элементов структуры измеряется большим количеством, что в экономической практике является редкостью, исходят из конкретно заданных условий.

При формировании рабочих формул расчета влияния факторов в условиях применения ЭВМ пользуются следующими правилами, отражающими механику работы с матрицами: подынтегральные выражения элементов структуры факторной системы для мультипликативных моделей строятся путем произведения полного набора элементов значений, взятых по каждой строке матрицы, отнесенных к определенному элементу структуры факторной системы с последующей расшифровкой значений, приведенных справа и внизу матрицы исходных значений (табл. 5.2).

Формирование рабочих формул интегрального метода для кратных моделей. Подынтегральное выражение элементов структуры факторной системы для кратных моделей строится путем ввода под знак интеграла исходного значения, полученного на пересечении строк в зависимости от вида модели и элементов структуры факторной системы с последующей расшифровкой значений, приведенных справа и внизу матрицы исходных значений.

Пример 2 (табл. 5.3).

Вид модели факторной системы

Последующее вычисление определенного интеграла по заданной подынтегральной функции и заданному интервалу интегрирования выполняется при помощи ЭВМ по стандартной программе, в которой используется формула Симпсона, или вручную в соответствии с общими правилами интегрирования.

В случае отсутствия универсальных вычислительных средств предложим чаще всего встречающийся в экономическом анализе набор формул расчета элементов структуры для мультипликативных (табл. 5.4) и кратных (табл. 5.3) моделей факторных систем, которые были выведены в результате выполнения процесса интегрирования.

Учитывая потребность наибольшего их упрощения, выполнена вычислительная процедура по сжатию формул, полученных после вычисления определенных интегралов (операции интегрирования).

Приведем примеры построения рабочих формул расчета элементов структуры факторной системы.

Пример 1 (см. табл. 5.4).

Вид модели факторной системы f = xyzq (мультипликативная модель). Структура факторной системы:

Рабочие формулы расчета элементов структуры факторной системы

Использование рабочих формул значительно расширяется в детерминированном цепном анализе, при котором выявленный фактор может быть ступенчато разложен на составляющие как бы в другой плоскости анализа.

Примером детерминированного цепного факторного анализа может быть внутрихозяйственный анализ производственного объединения, при котором оценивается роль каждой производственной единицы в достижении лучшего результата в целом по объединению.

Интегральный метод дает точные оценки факторных влияний. Результаты расчетов не зависят от последовательности подстановок и последовательности расчета факторных влияний. Метод применим для всех видов непрерывно дифференцируемых функций, не требует предварительных знаний о том, какие факторы количественные, а какие качественные.

Для применения интегрального метода требуются знание основ дифференциального исчисления, техники интегрирования и умение находить производные различных функций. Вместе с тем в теории анализа хозяйственной деятельности для практических приложений разработаны конечные рабочие формулы интегрального метода для наиболее распространенных видов факторных зависимостей, что делает этот метод доступным для каждого аналитика. Приведем некоторые из них.

Использование этих моделей позволяет выбрать факторы, целенаправленное изменение которых позволяет получить желаемое значение результатного показателя.

Узнай цену консультации

"Да забей ты на эти дипломы и экзамены!” (дворник Кузьмич)