Сенсорные пороги

Абсолютная чувствительность сенсорной системы основана на её свойстве обнаруживать слабые, короткие или маленькие по размеру раздражители.

Абсолютную чувствительность измеряют порогом той или иной реакции организма на сенсорное воздействие. Чувствительность системы и порог реакции – обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот.

Порогом реакции считают ту минимальную интенсивность, длительность, энергию или площадь воздействия, которая вызывает данную реакцию. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5–0,75 (правильный ответ о наличии стимула от 1/2 до 3/4 случаев его воздействия).

Более низкие значения интенсивности считаются подпороговыми, а более высокие – надпороговыми.

Оказалось, однако, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения; см. гл. 12). Такие подпороговые, или субсенсорные реакции впервые были описаны Г.В. Гершуни, который обнаружил их у людей, контуженных на войне.

Если снизить интенсивность света настолько, что человек уже не может сказать, видел ли он вспышку или нет, то от его руки можно зарегистрировать неощущаемую кожно-гальваническую реакцию на данный сигнал. На такой процедуре основано действие «детектора лжи».

Сказанное означает, что сенсорный порог – понятие конвенциональное, т.е. зависит от его точного определения, или соглашения (конвенции) между людьми. Всегда должно быть точно условлено, по какой именно реакции измеряется порог, какая величина этой реакции или вероятность её появления будут считаться пороговыми.

Это означает, что должны быть чётко определены критерии порога. Очевидно, что у одного и того же человека может быть измерено много отличающихся друг от друга абсолютных порогов сенсорной чувствительности для одного и того же органа чувств в зависимости от того, какая реакция и какой критерий этой реакции избраны для оценки. Таким образом, тот или иной порог – одна из условных точек континуума стимулов, или «сенсорного ряда».

В любой сенсорной системе, как и в технических средствах связи, существуют так называемые «шумы». Шумом можно считать любое событие в сенсорной системе, не связанное непосредственно с передачей и переработкой данного сенсорного сообщения, но влияющее на него.

В качестве примера сенсорного шума можно привести «темновой свет» сетчатки глаза. Он возникает без какой бы то ни было стимуляции в результате спонтанного теплового распада молекул фотопигмента в рецепторах сетчатки. Ясно, что такие шумы мешают обнаруживать, передавать и анализировать сенсорные сигналы.

Накладываясь на сигналы, шумы их искажают. Кроме того, возникает опасность так называемых «ложных тревог» или, наоборот, пропуска стимула. В первом из этих случаев человек сообщает о наличии сигнала, принимая за него тот или иной шумовой эффект. Во втором случае он не замечает реального сигнала, замаскированного шумом. В результате этого порог реакции повышается.

Теория обнаружения «зашумлённых» сигналов в применении к восприятию человека предложена В. Таннером и Дж. Светсом.

Они считали, что обнаружение сенсорного сигнала зависит как от дисперсии (ширины распределения) величины шумового эффекта и флуктуирующего полезного сигнала, а также степени перекрытия этих распределений, так и от критерия принятия решения, связанного с личностью испытуемого (осторожность или решительность, установка, уровень и концентрация внимания ( СНОСКА: Роль избирательного внимания для обнаружения слабых и зашумлённых сенсорных сигналов прекрасно иллюстрируется известным «эффектом вечеринки с коктейлем».

Заинтересованный слушатель иногда может разобрать разговор людей, отделённых от него толпой громко разговаривающих участников вечеринки.

Выделить подобный разговор с помощью приборов пока невозможно, а нейрофизиологические механизмы этого эффекта неясны .) и т.п.). Особенно сильно влияние шума на обнаружение слабых сигналов: они то воспринимаются, то не воспринимаются при повторных тестах. Поэтому порог реакции становится вероятностным понятием.

Это означает, что при одиночном тестировании его нельзя определить: необходимо оценить вероятность появления реакции в серии предъявлений стимула (обычно не меньше 10 идентичных стимулов).

Если оказалось, что вероятность ответа на этот стимул больше порогового критерия (например, она равна 0,75, т.е. правильные ответы получены в 3/4 случаев предъявления стимула), то интенсивность стимула снижают и серию предъявлений повторяют. Так делают до тех пор, пока вероятность реакции не снизится заведомо ниже порогового критерия.

На обнаружение сигнала существенное влияние оказывают процессы пространственной и временной суммации.

Они сводятся к способности сенсорной системы накапливать энергию сигнала, распределённую по некоторой зоне в пространстве рецепторов или во времени. Так, увеличение до определённого предела размера сенсорного стимула или его длительности снижает порог. Этот предел называют критическим размером, или же критической длительностью стимула.

Дифференциальная сенсорная чувствительность основана на способности сенсорной системы к различению сигналов.

Важная характеристика каждой сенсорной системы – способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в нём участвуют нейроны всех отделов сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое человек может заметить (дифференциальный или разностный порог).

Порог различения интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определённую долю (закон Вебера). Так, усиление давления на кожу руки ощущается, если увеличить груз на 3% (к гирьке весом в 100 г надо добавить 3 г, а к гирьке весом в 200 г надо добавить 6г).

Эта зависимость выражается следующей формулой: dI/1 = const., где I – сила раздражения, dI – её едва ощущаемый прирост (порог различения), const – постоянная величина (константа). Аналогичные соотношения получены для зрения, слуха и других органов чувств человека.

Зависимость силы ощущения от силы раздражения (закон Вебера–Фехнера) выражается следующей формулой: Е = a log I + b, где Е – величина ощущения, I – сила раздражения, а и b – константы, различные для разных модальностей стимулов.

Эта формула показывает, что ощущение усиливается пропорционально логарифму интенсивности раздражения. Кроме того, современная психофизиология для оценки силы ощущения использует также методы сенсорного шкалирования, т.е. субъективной оценки человеком силы своего ощущения путём его сравнения с ранее созданным эталоном или набором таких эталонов.

Отношение между ощущением и стимулом в этом случае выражается степенной функцией (закон Стивенса), Сравнение логарифмической функции закона Вебера – Фехнера и степенной функции закона Стивенса показало, что в основной, рабочей части диапазона интенсивностей эти функции дают количественно близкие оценки.

Ранее говорилось о различении силы раздражителей.

Пространственное различение сигналов основано на характере распределения возбуждения в слое рецепторов и в нейронных слоях сенсорной системы. Так, если два раздражителя возбудили два соседних рецептора, то их различение невозможно: они сольются и будут восприняты как единое целое. Необходимо, чтобы между двумя возбуждёнными рецепторами находился хотя бы один невозбуждённый.

Временное различение двух раздражений возможно, если вызванные ими нервные процессы не сливаются во времени, а сигнал, вызванный вторым стимулом, не попадает в рефракторный период от предыдущего раздражения.

Нейрофизиологической основой временного разрешения являются так называемые циклы возбудимости, или циклы восстановления ответов. О них судят по величине ответа на второй из двух последовательно предъявленных стимулов.

При коротких интервалах между стимулами ответа на второй из них может не быть вообще (абсолютный рефракторный период). У человека по поведенческим реакциям этот период может длиться от нескольких десятков до 100 и более миллисекунд. При больших интервалах ответ на второй стимул появляется, но величина его меньше, чем на одиночный стимул (относительная рефрактерность).

И, наконец, при ещё больших интервалах восстановление второго ответа заканчивается, и он сравнивается с ответом на одиночное раздражение.

На временном взаимодействии между последовательными раздражителями основана так называемая «сенсорная маскировка». Она лежит в основе многих сенсорных эффектов и широко используется в психофизиологических экспериментах.

Сама маскировка прямо связана с попаданием одного из стимулов в рефракторную фазу цикла возбудимости после первого раздражения. Различают прямую маскировку, при которой тормозится ответ на второй стимул, и обратную маскировку, при которой второй стимул как бы прерывает или мешает обработке информации о первом сигнале.

Эффективность как прямой, так и обратной маскировки тем больше, чем короче интервал между стимулом и «маской», а также чем более сходны эти два сигнала по своим свойствам. В качестве «маски» часто используют стимул, состоящий либо из шума, либо из набора хаотично распределённых элементов основного раздражителя.

Узнай цену консультации

"Да забей ты на эти дипломы и экзамены!” (дворник Кузьмич)