Исследования биоэлектрических явлений

Чрезвычайно важное направление развития физиологии было ознаменовано открытием «животного электричества». Классический «второй опыт» Луиджи Гальвани показал, что живые ткани являются источником электрических потенциалов, способных воздействовать на нервы и мышцы другого организма и вызывать сокращение мышц. С тех пор на протяжении почти целого столетия единственным индикатором потенциалов, генерируемых живыми тканями (биоэлектрических потенциалов), был нервно-мышечный препарат лягушки. Он помог открыть потенциалы, генерируемые сердцем при его деятельности (опыт Келликера и Мюллера), а также необходимость непрерывной генерации электрических потенциалов для постоянного сокращения мышц (опыт «вторичного тетануса» Матеучи). Стало ясно, что биоэлектрические потенциалы — это не случайные (побочные) явления в деятельности живых тканей, а сигналы, при помощи которых в организме передаются команды в нервной системе и от нее на мышцы и другие органы и таким образом живые ткани взаимодействуют между собой, используя «электрический язык».

Понять этот «язык» удалось значительно позже, после изобретения физических приборов, улавливающих биоэлектрические потенциалы. Одним из первых таких приборов был простой телефон. Замечательный русский физиолог Н.Е.Введенский при помощи телефона открыл ряд важнейших физиологических свойств нервов и мышц. Используя телефон, удалось прослушать биоэлектрические потенциалы, т.е. исследовать их путем наблюдения. Значительным шагом вперед было изобретение методики объективной графической регистрации биоэлектрических явлений.

Нидерландский физиолог Эйнтховен изобрел струнный гальванометр — прибор, позволивший зарегистрировать на фотобумаге электрические потенциалы, возникающие при деятельности сердца, — электрокардиограмму (ЭКГ). В нашей стране пионером этого метода был крупнейший физиолог, ученик И.М.Сеченова и И.П.Павлова А.Ф.Самойлов, работавший некоторые время в лаборатории Эйнтховена в Лейдене.

История сохранила любопытные документы. А. Ф. Самойлов в 1928 г. написал шутливое письмо:

«Дорогой Эйнтховен, я пишу письмо не Вам, а вашему дорогому и уважаемому струнному гальванометру. Поэтому и обращаюсь к нему: Дорогой гальванометр, я только что узнал о Вашем юбилее. 25 лет тому назад вы начертали первую электрокардиограмму. Поздравляю Вас. Не хочу скрыть от Вас, что Вы мне нравитесь, несмотря на то, что Вы иногда пошаливаете. Удивляюсь тому, как много Вы достигли в течение 25 лет. Если бы мы могли сосчитать число метров и километров фотографической бумаги, употребленной для записи Вашими струнами во всех частях света, то полученные цифры были бы огромными. Вы создали новую промышленность. Имеете также филологические заслуги; мы обязаны Вам рождением новых слов, подобных электрокардиограмме». В конце письма Самойлов добавил: «Дорогой Эйнтховен, прошу Вас прочитать это письмо струнному гальванометру, ибо он умеет писать, но не может читать».

Очень скоро автор получил ответ от Эйнтховена, который писал: «Я точно выполнил Вашу просьбу и прочел письмо гальванометру. Несомненно, он выслушал и принял с удовольствием и радостью все, что Вы написали. Он не подозревал, что сделал так много для человечества. Но на том месте, где Вы говорите, что он не умеет читать, он вдруг рассвирепел… так, что я и моя семья даже взволновались. Он кричал: Что, я не умею читать? Это — ужасная ложь. Разве я не читаю все тайны сердца?».

Действительно, электрокардиография из физиологических лабораторий очень скоро перешла в клинику как весьма совершенный метод исследования состояния сердца, и многие миллионы больных сегодня обязаны этому методу своей жизнью.

В последующем использование электронных усилителей позволило создать компактные электрокардиографы, а методы телеметрии дают возможность регистрировать ЭКГ у космонавтов на орбите, у спортсменов на трассе и у больных, находящихся в отдаленных местностях, откуда ЭКГ передается по телефонным проводам в крупные кардиологические учреждения для всестороннего анализа.

Объективная графическая регистрация биоэлектрических потенциалов послужила основой важнейшего раздела нашей науки — электрофизиологии. Крупным шагом вперед было предложение английского физиолога Эдриана использовать для записи биоэлектрических явлений электронные усилители. Советский ученый В. В. Правдич-Неминский впервые зарегистрировал биотоки головного мозга — получил электроэнцефалограмму (ЭЭГ). Этот метод был позже усовершенствован немецким ученым Бергером. В настоящее время электроэнцефалография широко используется в клинике, так же как и графическая запись электрических потенциалов мышц (электромиография), нервов и других возбудимых тканей и органов. Это позволило проводить тонкую оценку функционального состояния данных органов и систем. Для самой физиологии указанные методы имели также большое значение: они позволили расшифровать функциональные и структурные механизмы деятельности нервной системы и других органов и тканей, механизмы регуляции физиологических процессов.

Важной вехой в развитии электрофизиологии было изобретение микроэлектродов, т.е. тончайших электродов, диаметр кончика которых равен долям микрона. Эти электроды при помощи соответствующих устройств — микроманипулягоров можно вводить непосредственно в клетку и регистрировать биоэлектрические потенциалы внутриклеточно. Микроэлектроды дали возможность расшифровать механизмы генерации биопотенциалов, т.е. процессов, протекающих в мембранах клетки. Мембраны являются важнейшими образованиями, так как через них осуществляются процессы взаимодействия клеток в организме и отдельных элементов клетки между собой. Наука о функциях биологических мембран — мембранология — стала важной отраслью физиологии.

Узнай цену консультации

"Да забей ты на эти дипломы и экзамены!” (дворник Кузьмич)