Физиологические особенности гладких мышц

Пластичность гладкой мышцы. Важным свойством гладкой мышцы является ее большая пластичность, т. е. способность сохранять приданную растяжением длину без изменения напряжения. Различие между скелетной мышцей, обладающей малой пластичностью, и гладкой мышцей с хорошо выраженной пластичностью легко обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий груз.

Скелетная мышца тотчас укорачивается после снятия груза. В отличие от этого гладкая мышца после снятия груза остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникнет ее активного сокращения.

Свойство пластичности имеет очень большое значение для нормальной деятельности гладких мышц стенок полых органов, например мочевого пузыря: благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него относительно мало изменяется при разной степени наполнения.

Функциональный синцитий. Существуют различные типы гладких мышц. В стенках большинства полых органов находятся гладкие мышечные волокна длиной 50—400 мкм и диаметром 2—10 мкм. Эти волокна очень тесно примыкают друг к другу и потому при рассмотрении их в микроскопе создается впечатление, что они переходят друг в друга и морфологически составляют единое целое. На этом основании утверждали, что гладкие мышцы, как и сердечная мышца, имеют синцитиальное строение. Однако электронно-микроскопические исследования показали, что не существует мембранной и цитоплазматической непрерывности между отдельными волокнами гладких мышц: они отделены друг от друга межклеточными щелями, ширина которых может достигать 60—150нм. Несмотря на наличие этих щелей, гладкие мышцы функционируют так, как если бы они имели истинное синцитиальное строение. Это выражается в том, что потенциалы действия и медленные волны деполяризации беспрепятственно распространяются с одного волокна на другое. Ввиду этого понятие «синцитиальное строение» является в настоящее время скорее физиологическим, чем морфологическим.

Синцитий — функциональное образование, в котором возбуждение может свободно переходить с одной клетки в другую. Двигательные нервные окончания расположены только на небольшом числе волокон гладких мышц. Однако вследствие беспрепятственного распространения возбуждения с одного волокна на другое вовлечение в реакцию всей мышцы может происходить, если нервный импульс поступает к небольшому числу мышечных волокон.

В некоторых гладких мышцах, например в ресничной мышце глаза или радиальной мышце радужной оболочки, каждое волокно имеет самостоятельную иннервацию, подобно волокнам скелетной мышцы.

Электрическая активность гладких мышц. Потенциал покоя гладкомышечных волокон, обладающих автоматией, обнаруживает постоянные небольшие колебания. Величина его при внутриклеточном отведении равна 30—70 мВ (в среднем 50 мВ). Потенциал покоя гладких мышечных волокон, не обладающих автоматией, стабилен и равен 60—70 мВ. В обоих случаях его величина меньше значения потенциала покоя скелетных мышц. Это, по-видимому, связано с тем, что мембрана гладких мышечных волокон в покое характеризуется относительно высокой проницаемостью для ионов Na⁺.

Потенциалы действия в гладких мышцах также несколько ниже, чем в скелетных. Превышение потенциала действия над величиной потенциала покоя наблюдается не всегда и составляет не больше 10—20 мВ. В гладких мышцах внутренних органов зарегистрированы потенциалы действия двух основных типов: пикоподобные потенциалы действия и потенциалы действия с выраженным плато. Длительность пикоподобных потенциалов действия варьирует от 5 до 80 мс. Пик, как правило, сопровождается следовой гиперполяризацией. Иногда наблюдается следовая деполяризация.

Потенциалы действия с выраженным плато зарегистрированы в гладких мышцах уретры, матки и некоторых сосудов. Продолжительность плато 30—500 мс (рис. 40).

Ионный механизм возникновения потенциалов действия в гладких мышцах несколько отличается от такового в скелетных мышцах. Установлено, что деполяризация мембраны, лежащая в основе потенциала действия в ряде гладких мышц, связана с активацией электровозбудимых кальциевых каналов. Следует подчеркнуть, что эти каналы проницаемы не только для ионов Са²⁺ и некоторых двухвалентных катионов (Ва²⁺, Sr² ⁺), но и для ионов Na ⁺. От «быстрых» натриевых каналов, обеспечивающих генерацию потенциалов действия в нервных и скелетно-мышечных волокнах, «медленные» кальциевые каналы отличаются не только своей ионной избирательностью, но также кинетикой процессов активации и инактивации и чувствительностью к блокаторам. Кальциевые каналы активируются и инактивируются значительно медленнее, чем натриевые; они не чувствительны к тетродотоксину, но эффективно блокируются изоптином (верапамилом), ионами Са²⁺, Мп²⁺ и La³⁺. Изоптин применяют в медицинской практике для устранения или предупреждения спазма сосудов.

Проведение возбуждения по гладкой мышце. В нервных и скелетных мышечных волокнах возбуждение распространяется посредством локальных электрических токов, возникающих между деполяризованным и соседними покоящимися участками клеточной мембраны. Этот же механизм свойствен и волокнам гладких мышц. Однако в гладких мышцах потенциал действия, возникший в одном волокне (клетке), может распространяться на соседние волокна. Обусловлено это тем, что в мембранах клеток гладких мышц в области контактов с соседними клетками, так называемых нексусов, имеются участки относительно малого сопротивления, через которые петли тока, возникшие в одном волокне, легко проходят в соседние, вызывая деполяризацию их мембран. В этом отношении гладкая мышца отличается от скелетной и сходна с сердечной, которая также представляет собой функциональный синцитий. Между сердечным и гладкомышечным синцитием имеются некоторые важные различия. В сердце достаточно возбудить только одну клетку, чтобы это возбуждение распространилось на всю мышцу. В гладких же мышцах потенциал действия, возникший в одном участке, распространяется от него лишь на определенное расстояние, которое оказывается тем большим, чем сильнее приложенный стимул.

Другая существенная особенность гладких мышц заключается в том, что распространяющийся потенциал действия возникает в них только в том случае, если приложенный стимул возбуждает одновременно некоторое минимальное число мышечных клеток. В круговой мышце кишечника такая минимальная «критическая» зона имеет диаметр около 100 мкм, что соответствует 200—300 параллельно лежащим клеткам.

Скорость проведения возбуждения в различных гладких мышцах составляет от 2 до 10 см/с, т. е. значительно меньше, чем в скелетной мышце. При прочих равных условиях скорость проведения импульса по пучку гладко-мышечных волокон тем выше, чем больше длина отдельных волокон и, следовательно, чем меньшее число межклеточных переключений должен пройти потенциал действия. Поэтому в таком пучке скорость проведения в направлении длинной оси клеток примерно в 10 раз выше, чем в поперечном направлении.

Связь между возбуждением и сокращением. Так же как и в скелетной мускулатуре, в гладкой мышце потенциалы действия имеют пусковое значение для начала сократительного процесса. Связь между возбуждением и сокращением здесь также осуществляется при помощи ионов кальция. Однако в большинстве гладкомышечных клеток сарко-плазматический ретикулум плохо выражен и потому ведущую роль в механизме возникновения сокращения отводят тем ионам Са²⁺, которые проникают внутрь мышечного волокна во время генерации потенциала действия. Механизм выведения Са²⁺ из адиоплазмы при расслаблении гладких мышц изучен пока недостаточно. Часть Са²⁺ секвестируется саркоплазматическим ретикулумом. Предполагают также, что внутренняя сторона мембраны гладкомышечной клетки устлана белковыми молекулами, обладающими большим сродством к ионам Са²⁺. Однако ведущую роль в выведении Са²⁺ из миоплазмы у большинства гладкомышечных клеток, по-видимому, играет поверхностная мембрана. В этой мембране существуют две транспортные системы, обеспечивающие этот процесс: 1 система подвижных переносчиков, обменивающих внутриклеточный Са ²+ на наружный Na+, и 2 кальциевый насос (Са—АТФ-аза), использующий энергию АТФ для переноса Са ²⁺ в межклеточную среду.

Узнай цену консультации

"Да забей ты на эти дипломы и экзамены!” (дворник Кузьмич)