Химические реакции в живых клетках

Функционирование живых систем основано на биохимических реакциях, протекающих как в клеточных и субклеточных структурах, так и в цитоплазме и в межклеточных жидкостях. Биохимические реакции протекают в сравнительно узком интервале физических и химических параметров. Кроме ограничений в температурах и давлениях это относится также к интервалу концентраций, или активностей водородных ионов (величины рН).

Значение рН поддерживается на нужном уровне буферными системами. Некоторые биохимические реакции протекают с оптимальной скоростью лишь при определенном осмотическом давлении и ионной силе в среде, где сохраняется строго постоянным соотношение определенных ионов.

Биохимические реакции могут протекать лишь при соблюдении определенных энергетических требований. Первичным источником энергии на нашей планете является излучение Солнца. Часть этой энергии запасается в форме химической энергии в химических связях различных веществ.

Интересно
В настоящее время на Земле существенно преобладают аэробные условия, и большую часть энергии живые системы получают за счет окислительно-восстановительных процессов (и в первую очередь за счет окисления органических соединений атмосферным кислородом). Протекающие в организмах реакции являются либо экзергоническими (они протекают спонтанно), либо эндергоническими (они требуют для своего осуществления внешний источник энергии). Многие из эндергонических реакций могут протекать лишь потому, что они сопряжены с экзергоническими реакциями.

Наиболее распространенным переносчиком энергии является молекула аденозинтрифосфата (АТФ). АТФ – стандартная единица, в виде которой запасается высвобождающаяся при дыхании энергия. Молекула АТФ состоит из аденина, рибозы и трех фосфатных групп. При гидролитическом отщеплении двух ее концевых фосфатных групп выход свободной энергии на каждую из них составляет 30,6 кДж, тогда как отщепление третьей фосфатной группы дает только 13,8 кДж.

Именно по этой причине принято говорить, что АТФ и АДФ содержат богатые энергией связи (которые обозначают знаком ~ ). Для синтеза АТФ из АДФ и фосфата требуется 30,6 кДж/моль. Поэтому АТФ может образоваться лишь в таких реакциях, при которых выход энергии составляет более 30,6 кДж/моль, а вся энергия от реакций, дающих менее этой величины, не может быть запасена в АТФ и рассеивается в виде тепла.

Поскольку вся химическая энергия представлена в одной форме, процессы, идущие с потреблением энергии, нуждаются только в одной системе, способной принимать химическую энергию от АТФ. Этим достигается большая экономия в отношении действующих в клетке механизмов. АТФ – постоянный источник энергии для клетки. Он мобилен и может доставлять химическую энергию в любую часть клетки. Когда клетка нуждается в энергии, единственное, что требуется для ее получения – это гидролиз АТФ. Поскольку АТФ содержится во всех клетках, она считается универсальным источником энергии.

АДФ может быть рефосфорилирована в АТФ в результате дыхательной активности или за счет другого высокоэнергетического соединения, например, креатинфосфата, присутствующего в мышечной клетке. Если весь АДФ мышечной клетки превращается в АТФ, то фосфат от АТФ переносится на креатин с образованием креатинфосфата. При этом вновь появляется некоторое количество АДФ, которая присоединив фосфат, превращается в АТФ. При понижении уровня АТФ происходит обратный процесс: фосфат переносится от креатинфосфата на АДФ и содержание АТФ таким образом восстанавливается. Третий путь образования АТФ – фосфорилирование.

Биохимические реакции протекают со скоростями, зависящими от концентраций реагирующих молекул и констант скоростей, характерных для данного типа реакции. Эти скорости существенным образом могут быть повышены в присутствии катализаторов – ферментов. Вредные воздействия окружающей среды проявляются в первую очередь на ферментативном уровне, ингибируя соответствующие реакции.

Итак, живая клетка – это открытая изотермическая система, обладающая способностью к самосборке, саморегуляции и самовоспроизведению.

Эта система состоит из большого числа связанных друг с другом реакций, ускоряемых органическими катализаторами, которые производит сама клетка; клетка действует по принципу максимальной экономии составных частей и процессов.

Узнай цену консультации

"Да забей ты на эти дипломы и экзамены!” (дворник Кузьмич)